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Review

A spanning tree of a connected, undirected graph G is a sub-
graph of G which is a tree that connects all the vertices
together

— A graph G can have many different spanning trees

« A minimum spanning tree (MST) is defined as a spanning
tree with weight less than or equal to the weight of every
other spanning tree

— We can assign weights to each edge, and use it to assign a

weight to a spanning tree by calculating the sum of the weights
of the edges in that spanning

« Prim’s Algorithm
 Kruskal’s Algorithm



Basic Idea

- Assume that we have a connected, undirected graph G =
(V, E) with a weight function w: E — R, and we wish to find
a minimum spanning tree for G

— The basic idea is to maintain a subset A of some MST

— At each step, we determine an edge (u, v) and add to A

— We should make sure that A U {(u, v)} is still a subset of a MST
— Such an edge is called a safe edge for A

o The tricky part is, of course, finding a safe edge in line 3

GENERIC-MST (G, w)

1 A=10

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A
4 A= AU{(u,v)}

S5 return 4




Definitions.

We first define some definitions

A cut (S,V — S) of an undirected graph ¢ = (V,E) is a
partition of I/

We say that an edge (u, v) € E crosses the cut (S,V — §) if one
of its endpoints is in S and the otherisinV — §

We say that a cut respects a set A of edges if no edge in A
crosses the cut

An edge is a light edge crossing a cut if its weight is the
minimum of any edge crossing the cut
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Definitions..
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— The edge (d, ¢) is the unique light edge crossing the cut

— A subset A of the edges is shaded

e The cut (5,V — §) respects A, since no edge of A crosses the cut




Theorem.

« Let G = (V,E) be a connected, undirected graph with a real-
valued weight function w defined on E

— Let A be a subset of E that is included in some minimum
spanning tree for G

— Let (§,V — S) be any cut of G that respects A
— Let (u, v) be a light edge crossing (S,V — 5)
— Edge (u, v) is safe for A
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Theorem..

. Say:
— Let T is a minimum spanning tree that include A, and T" is a
tree that include A
— We assume that AU (x,y) €STand AU (c,d) S T’

e x and y are on opposite sides of the cut (S,V — §), and (x,y) #
(c,d)
-T'=T—-(x,y) + (c,d)
« Although (x,y) crosses the cut, w(c,d) < w(x,y)
e w(T') =w(T) —w(x,y) + w(c,d) < w(T)
e Thus, T’ is actually a MST!
o The result implies that (¢, d), the light edge, is safe for A




Theorem...

Proof:
— Let T is a minimum spanning tree that include A, and T' is a
tree that include A
e AU(x,y) €STand AU (u,v) €T’
-T'=T—-(x,y) + (c,d)
o Although (x,y) crosses the cut, w(u,v) < w(x,y)
e W(T") =w() —w(x,y)+w(u,v) <w(T)
o Thus, T’ is actually (also) a MST!
o The result implies that (u, v), the light edge, is safe for A




Prim and Kruskal Algorithms

« They each use a specific rule to determine a safe edge in line

3 of GENERIC-MST

GENERIC-MST(G, w)

1 A=40

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A
4

5

A= AU{(u,v)}
return A

— In Kruskal’s algorithm
 The set A is a forest whose vertices are all those of the given graph

o The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components

— In Prim’s algorithm
 The set A forms a single tree

 The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree



Kruskal’s Algorithm.

— In Kruskal’s algorithm

 The set A is a forest whose vertices are all those of the given graph

o The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components




Kruskal’s Algorithm..

MST-KRUSKAL(G, w)
A=10
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (1) # FIND-SET(v)
A=AU{(u,v)}
UNION(u, v)
return A
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Kruskal’s Algorithm...




Prim’s Algorithm.

— In Prim’s algorithm

 The set A forms a single tree

 The safe edge added to A is always a least-weight edge connecting
the tree to a vertex not in the tree
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Prim’s Algorithm..
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Prim’s Algorithm...
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MST-PRIM(G, w, r)

for cachu € G.V
u.key = oo
u.m = NIL
r.key = 0
Q0 =G.V
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adju]
if v e Qandw(u,v) <v.key
V.T = U
v.key = w(u,v)
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Prim’s Algorithm....

. Step4 MST-PRIM(G, w, r)
1 foreachu € G.V
- u==cC 2 u.key = oo
o el ol ) o
4 r.key =0
Key 7 o 4 o 5 0=0G.V
T ¢ NL ¢ NL 3 ¢ 6 while Q # 0
7 u = EXTRACT-MIN(Q)
« Step5 8 for each v € G.Adj[u]
—u=i 9 if v e QO and w(u,v) < v.key
10 V.T = U
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Prim’s Algorithm....

MST-PRIM(G, w, 1)

« Step7
P 1 foreachu € G.V
- u= 2 u.key = oo
nnnn ) o
4 r.key =0
Key 7 10 5 0Q=0G.V
7 u = EXTRACT-MIN(Q)
« Step8 8 for each v € G.Adj[u]
_u= 9 if v e QO and w(u,v) < v.key
10 V.T = U
nnn 11 v.key = w(u,v)
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Prim’s Algorithm....

« Stepl0
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MST-PRIM(G, w, 1)

for cachu € G.V
u.key = oo
u.m = NIL
r.key = 0
Q0 =GV
while Q # 0
u = EXTRACT-MIN(Q)
for each v € G.Adju]
if v e Qandw(u,v) <v.key
VT = U
v.key = w(u,v)
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Questions?

kychen@mail.ntust.edu.tw
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