

Fundamental of Minimal Spanning Trees

Kuan-Yu Chen (陳冠宇)

2019/05/29 @ TR-310-1, NTUST

Review

- A spanning tree of a connected, undirected graph G is a subgraph of G which is a tree that connects all the vertices together
 - A graph G can have many different spanning trees
- A **minimum spanning tree** (MST) is defined as a spanning tree with weight less than or equal to the weight of every other spanning tree
 - We can assign **weights** to each edge, and use it to assign a weight to a spanning tree by calculating the sum of the weights of the edges in that spanning
 - Prim's Algorithm
 - Kruskal's Algorithm

Basic Idea

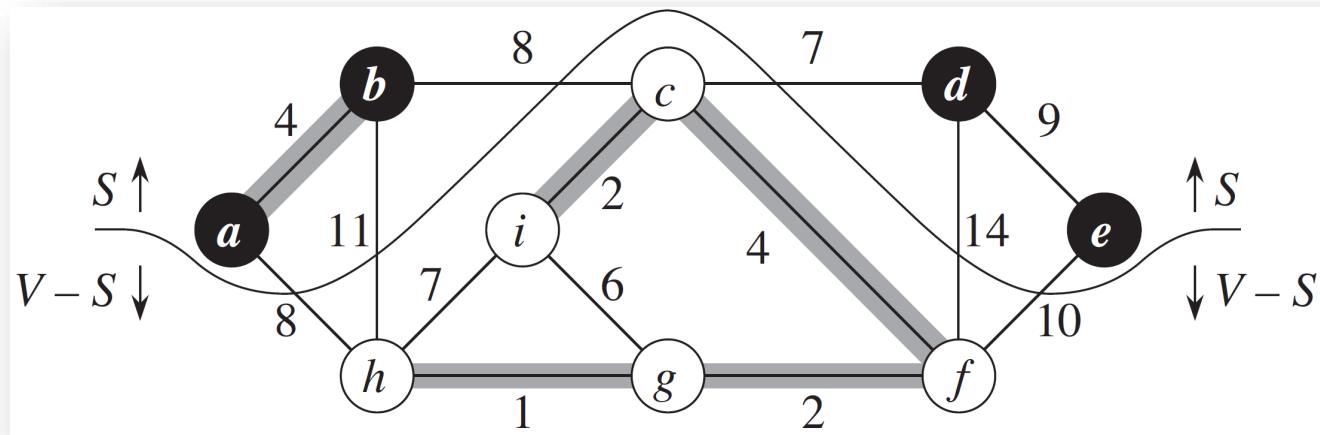
- Assume that we have a connected, undirected graph $G = (V, E)$ with a weight function $w: E \rightarrow \mathbb{R}$, and we wish to find a minimum spanning tree for G
 - The basic idea is to maintain a subset A of some MST
 - At each step, we determine an edge (u, v) and add to A
 - We should make sure that $A \cup \{(u, v)\}$ is still a subset of a MST
 - Such an edge is called a **safe edge** for A
 - The tricky part is, of course, finding a safe edge in line 3

GENERIC-MST(G, w)

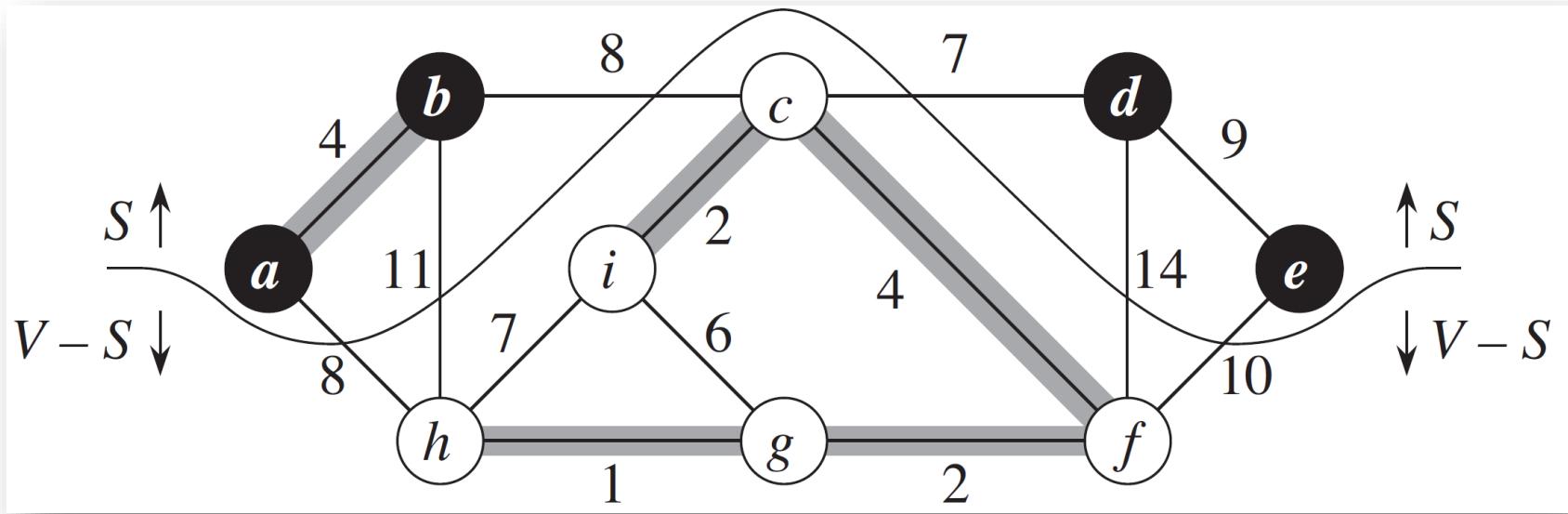
```
1   $A = \emptyset$ 
2  while  $A$  does not form a spanning tree
3      find an edge  $(u, v)$  that is safe for  $A$ 
4       $A = A \cup \{(u, v)\}$ 
5  return  $A$ 
```

Definitions.

- We first define some definitions
 - A ***cut*** $(S, V - S)$ of an undirected graph $G = (V, E)$ is a partition of V
 - We say that an edge $(u, v) \in E$ ***crosses*** the cut $(S, V - S)$ if one of its endpoints is in S and the other is in $V - S$
 - We say that a cut ***respects*** a set A of edges if no edge in A crosses the cut
 - An edge is a ***light edge*** crossing a cut if its weight is the minimum of any edge crossing the cut



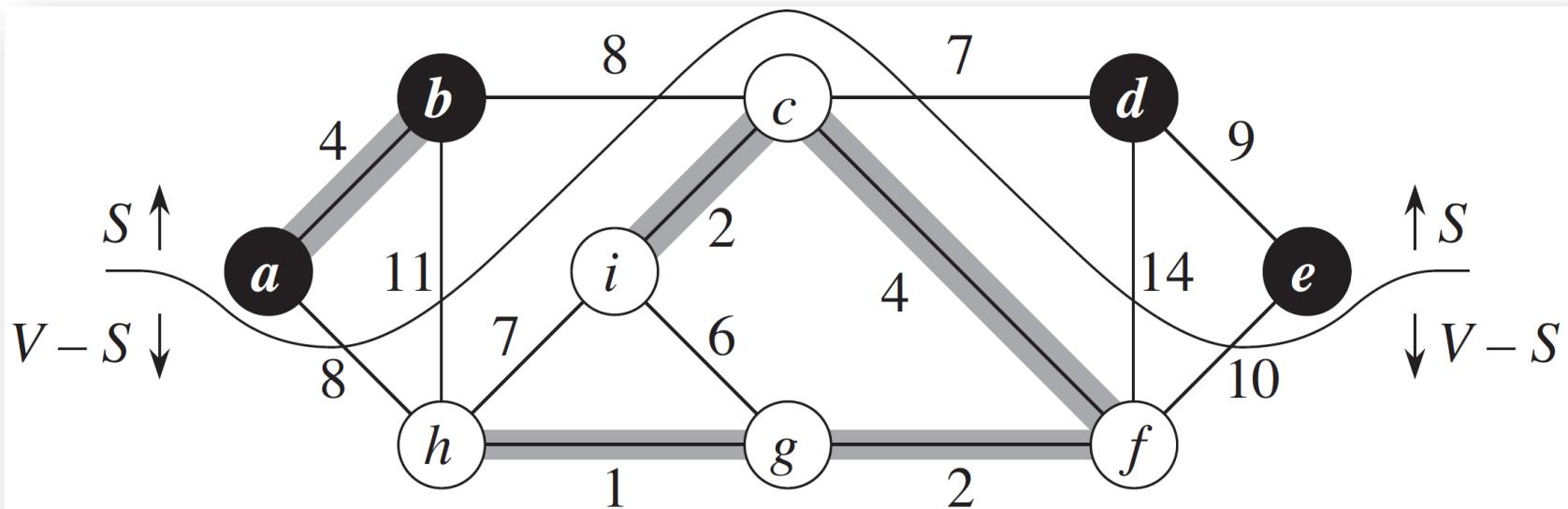
Definitions..



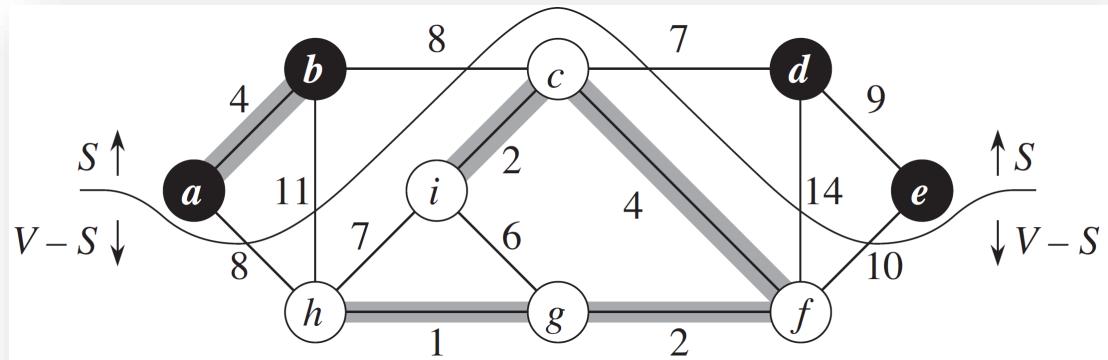
- The edge (d, c) is the unique **light edge** crossing the cut
- A subset A of the edges is shaded
 - The cut $(S, V - S)$ **respects** A , since no edge of A crosses the cut

Theorem.

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E
 - Let A be a subset of E that is included in some minimum spanning tree for G
 - Let $(S, V - S)$ be any cut of G that respects A
 - Let (u, v) be a light edge crossing $(S, V - S)$
 - Edge (u, v) is safe for A

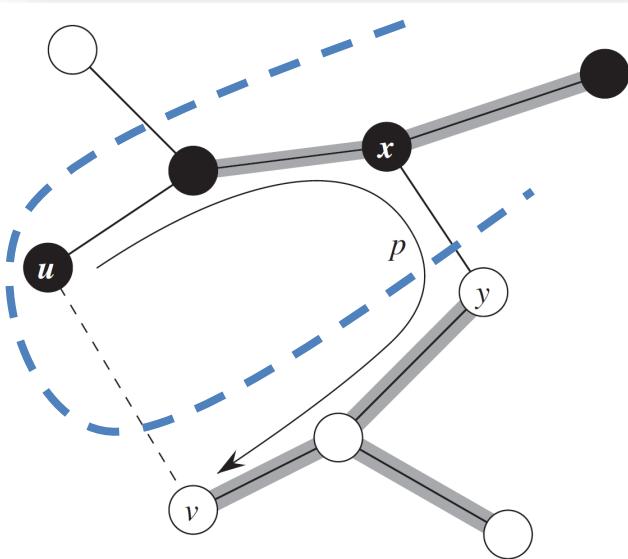


Theorem..



- Say:
 - Let T is a minimum spanning tree that include A , and T' is a tree that include A
 - We assume that $A \cup (x, y) \subseteq T$ and $A \cup (c, d) \subseteq T'$
 - x and y are on opposite sides of the cut $(S, V - S)$, and $(x, y) \neq (c, d)$
 - $T' = T - (x, y) + (c, d)$
 - Although (x, y) crosses the cut, $w(c, d) < w(x, y)$
 - $w(T') = w(T) - w(x, y) + w(c, d) < w(T)$
 - Thus, T' is actually a MST!
 - The result implies that (c, d) , the light edge, is safe for A

Theorem...



- Proof:
 - Let T is a minimum spanning tree that include A , and T' is a tree that include A
 - $A \cup (x, y) \subseteq T$ and $A \cup (u, v) \subseteq T'$
 - $T' = T - (x, y) + (c, d)$
 - Although (x, y) crosses the cut, $w(u, v) \leq w(x, y)$
 - $w(T') = w(T) - w(x, y) + w(u, v) \leq w(T)$
 - Thus, T' is actually (also) a MST!
 - The result implies that (u, v) , the light edge, is safe for A

Prim and Kruskal Algorithms

- They each use a specific rule to determine a safe edge in line 3 of GENERIC-MST

```
GENERIC-MST( $G, w$ )
```

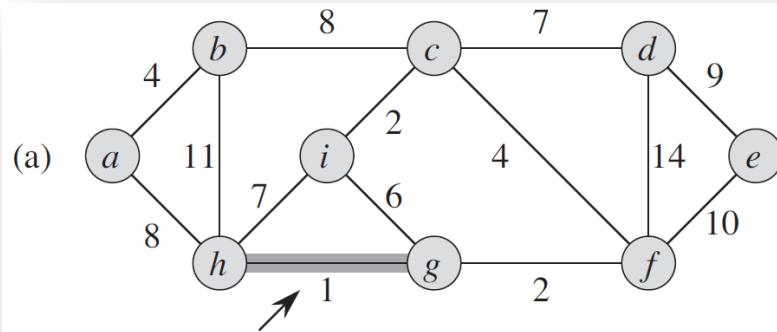
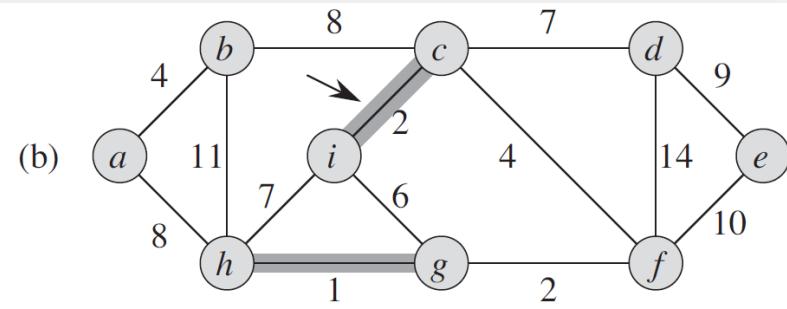
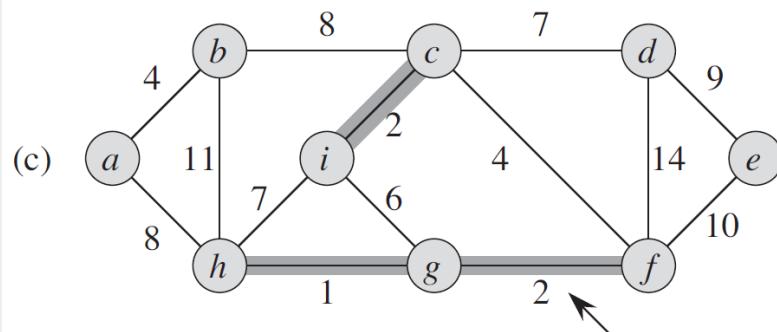
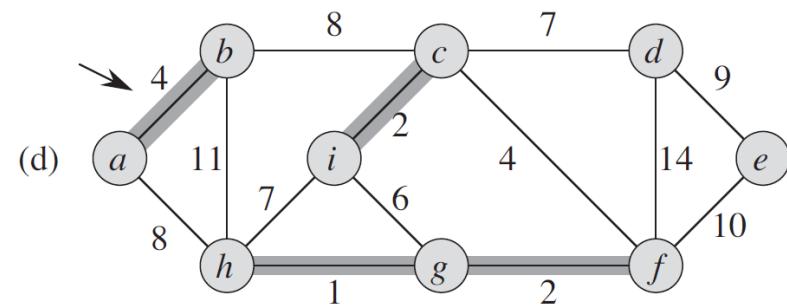
```
1   $A = \emptyset$ 
2  while  $A$  does not form a spanning tree
3      find an edge  $(u, v)$  that is safe for  $A$ 
4       $A = A \cup \{(u, v)\}$ 
5  return  $A$ 
```

- In Kruskal’s algorithm
 - The set A is a forest whose vertices are all those of the given graph
 - The safe edge added to A is always a least-weight edge in the graph that **connects two distinct components**
- In Prim’s algorithm
 - The set A forms a single tree
 - The safe edge added to A is always a least-weight edge **connecting the tree to a vertex not in the tree**

Kruskal's Algorithm.

- In Kruskal's algorithm

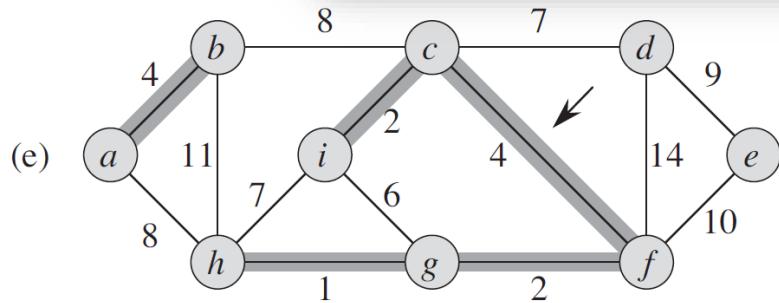
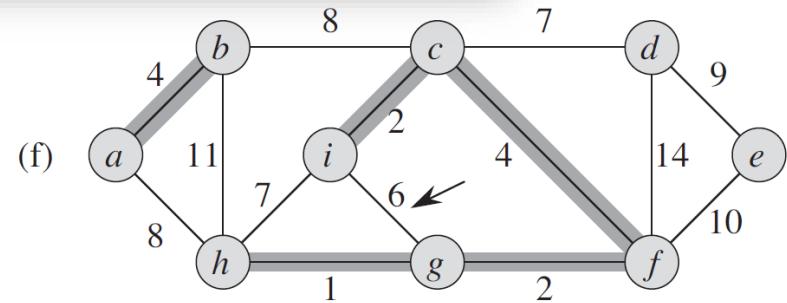
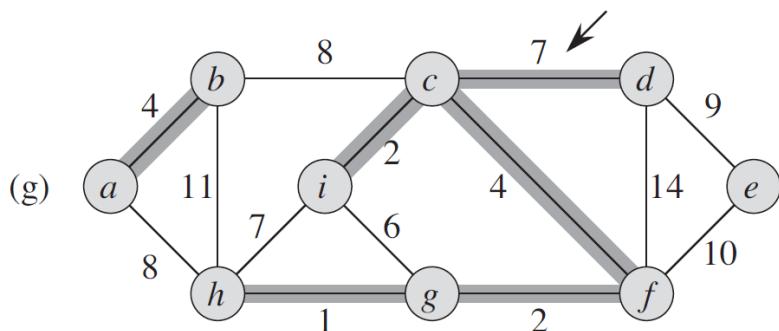
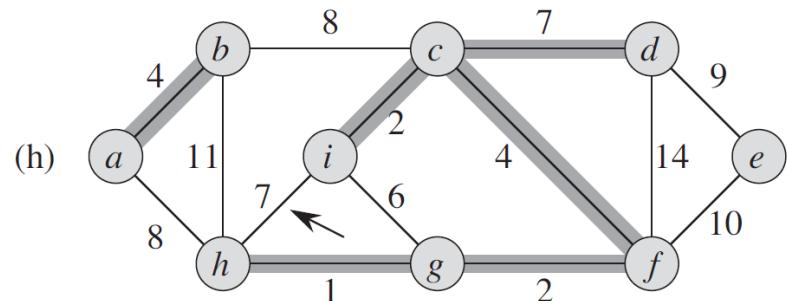
- The set A is a forest whose vertices are all those of the given graph
- The safe edge added to A is always a least-weight edge in the graph that **connects two distinct components**



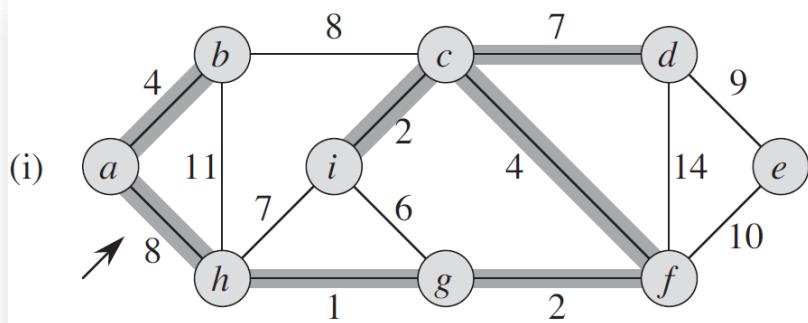
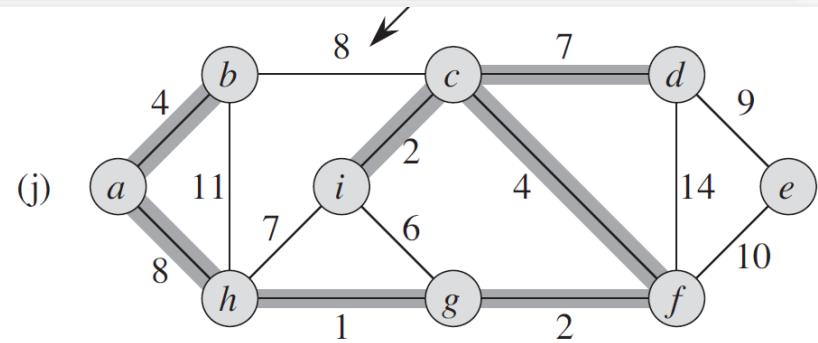
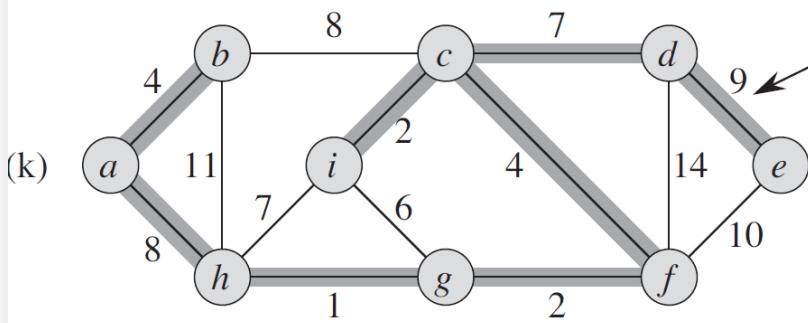
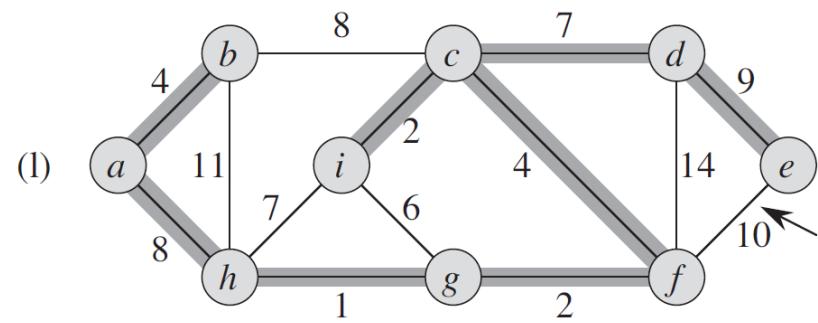
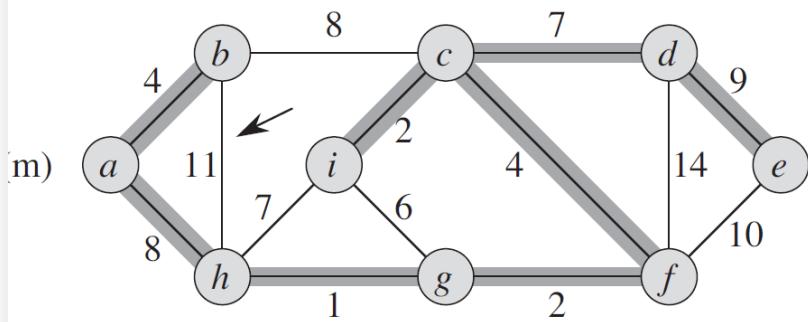
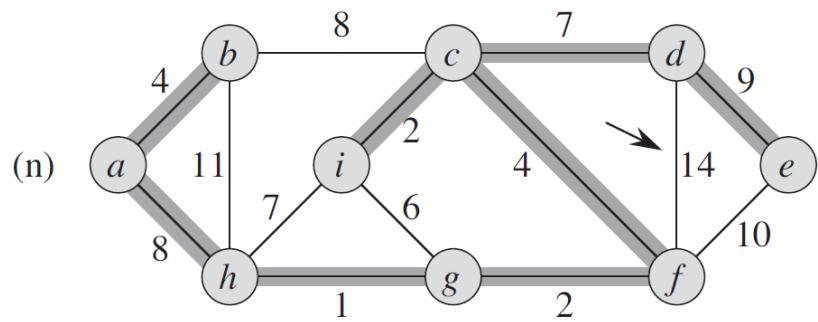
Kruskal's Algorithm..

MST-KRUSKAL(G, w)

```
1   $A = \emptyset$ 
2  for each vertex  $v \in G.V$ 
3      MAKE-SET( $v$ )
4  sort the edges of  $G.E$  into nondecreasing order by weight  $w$ 
5  for each edge  $(u, v) \in G.E$ , taken in nondecreasing order by weight
6      if FIND-SET( $u$ )  $\neq$  FIND-SET( $v$ )
7           $A = A \cup \{(u, v)\}$ 
8          UNION( $u, v$ )
9  return  $A$ 
```

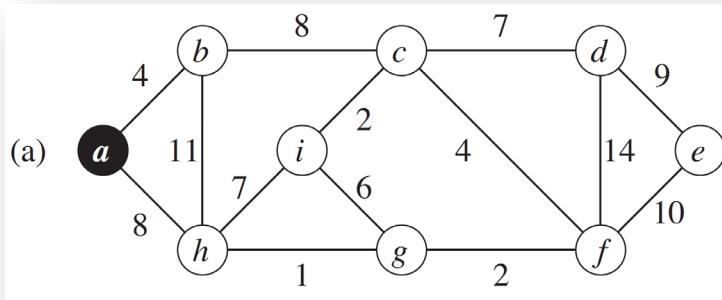
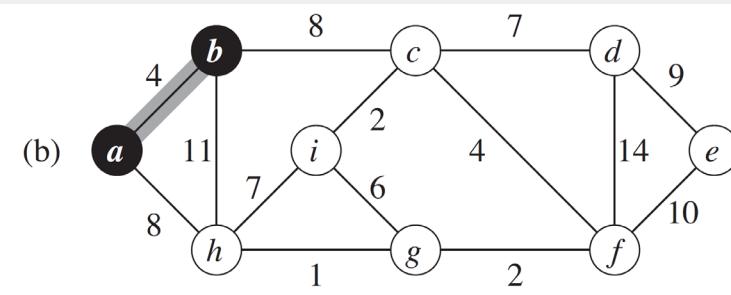
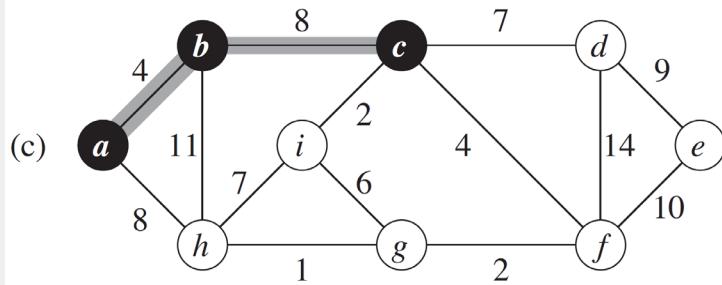
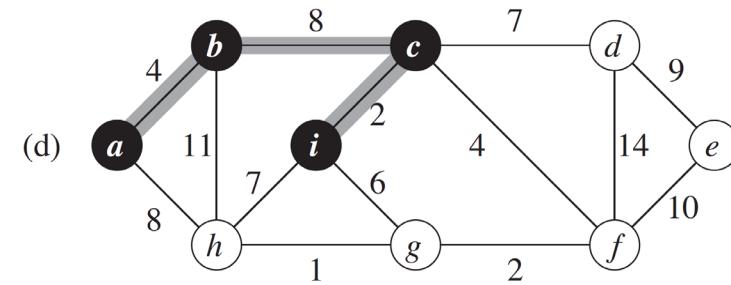


Kruskal's Algorithm...

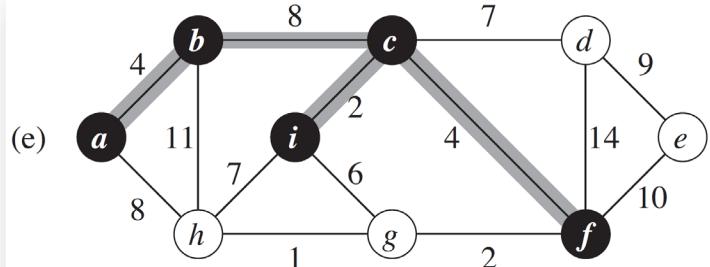
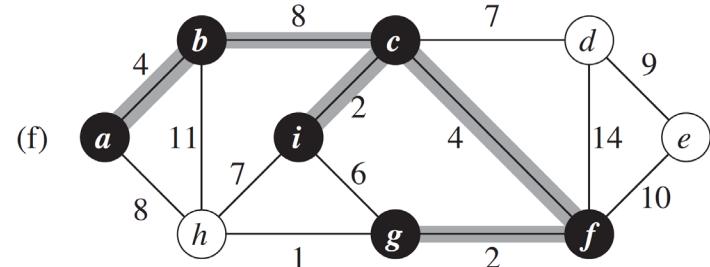
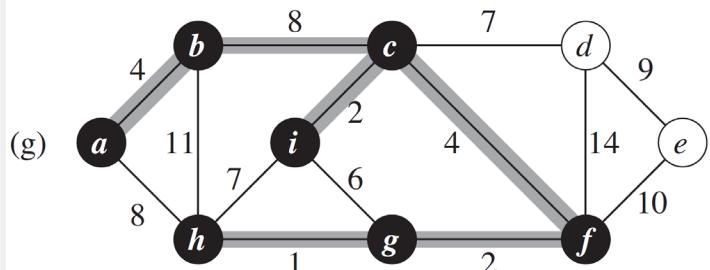
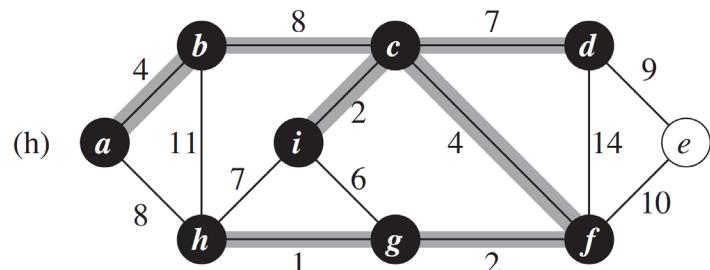
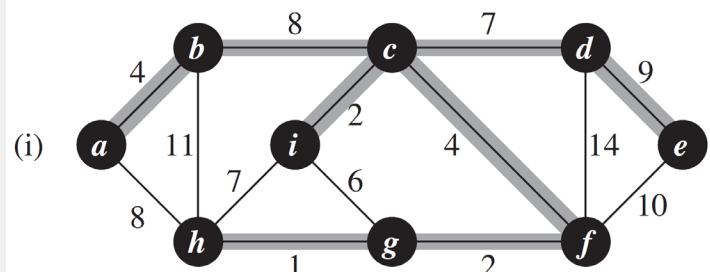


Prim's Algorithm.

- In Prim's algorithm
 - The set A forms a single tree
 - The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree



Prim's Algorithm..



Prim's Algorithm...

- Step1

Q	a	b	c	d	e	f	g	h	i
Key	0	∞							
π	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

- Step2

- $u = a$

Q	b	c	d	e	f	g	h	i
Key	4	∞	∞	∞	∞	∞	8	∞
π	a	NIL	NIL	NIL	NIL	NIL	a	NIL

- Step3

- $u = b$

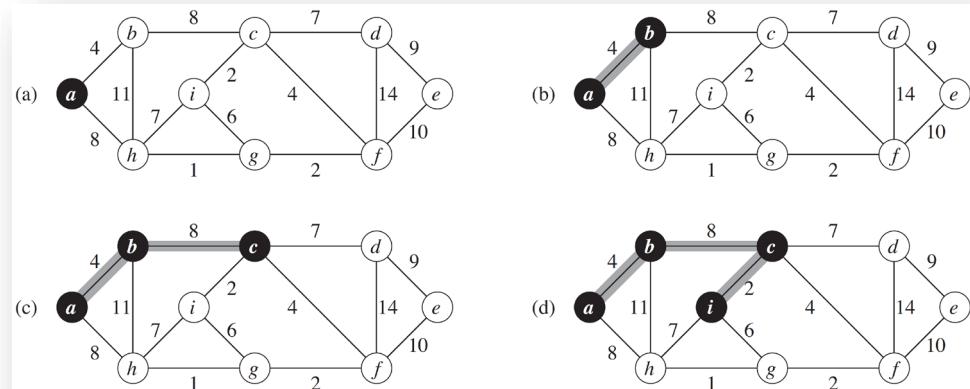
Q	c	d	e	f	g	h	i
Key	8	∞	∞	∞	∞	8	∞
π	b	NIL	NIL	NIL	NIL	a	NIL

MST-PRIM(G, w, r)

```

1  for each  $u \in G.V$ 
2     $u.key = \infty$ 
3     $u.\pi = \text{NIL}$ 
4   $r.key = 0$ 
5   $Q = G.V$ 
6  while  $Q \neq \emptyset$ 
7     $u = \text{EXTRACT-MIN}(Q)$ 
8    for each  $v \in G.Adj[u]$ 
9      if  $v \in Q$  and  $w(u, v) < v.key$ 
10         $v.\pi = u$ 
11         $v.key = w(u, v)$ 

```



Prim's Algorithm....

- Step4

- $u = c$

Q	d	e	f	g	h	i
Key	7	∞	4	∞	8	2
π	c	NIL	c	NIL	a	c

- Step5

- $u = i$

Q	d	e	f	g	h
Key	7	∞	4	6	7
π	c	NIL	c	i	i

- Step6

- $u = f$

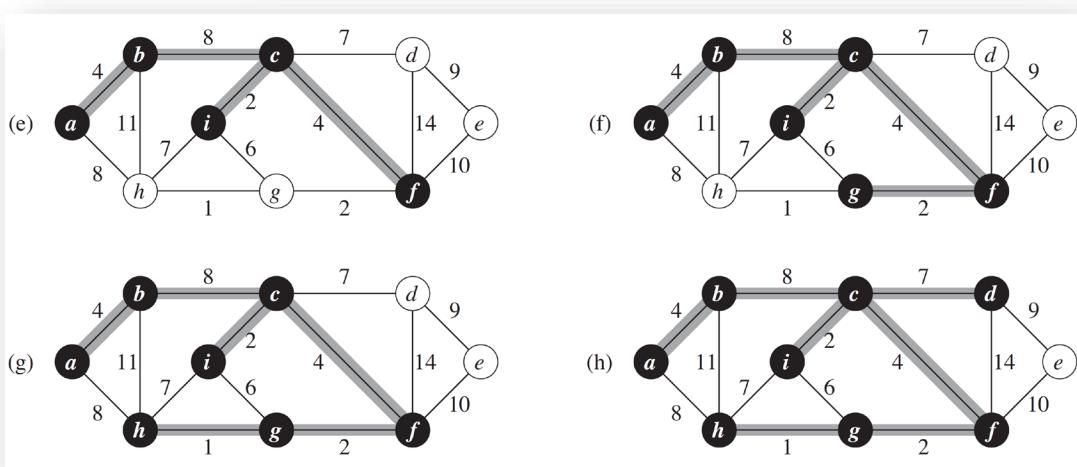
Q	d	e	g	h
Key	7	10	2	7
π	c	f	f	i

MST-PRIM(G, w, r)

```

1  for each  $u \in G.V$ 
2       $u.key = \infty$ 
3       $u.\pi = \text{NIL}$ 
4       $r.key = 0$ 
5       $Q = G.V$ 
6  while  $Q \neq \emptyset$ 
7       $u = \text{EXTRACT-MIN}(Q)$ 
8      for each  $v \in G.Adj[u]$ 
9          if  $v \in Q$  and  $w(u, v) < v.key$ 
10              $v.\pi = u$ 
11              $v.key = w(u, v)$ 

```



Prim's Algorithm....

- Step7

– $u = g$

Q	d	e	h
Key	7	10	1
π	c	f	g

- Step8

– $u = h$

Q	d	e
Key	7	10
π	c	f

- Step9

– $u = d$

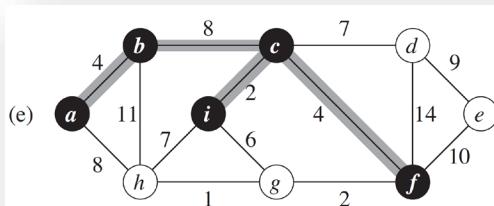
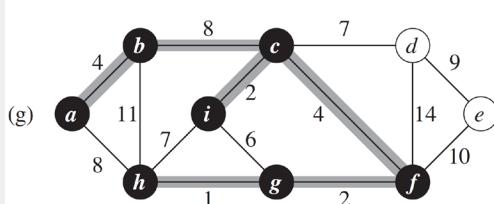
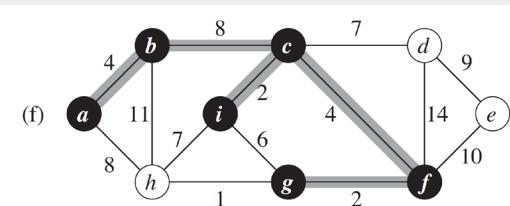
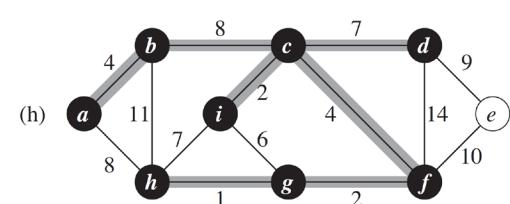
Q	e
Key	10
π	f

MST-PRIM(G, w, r)

```

1  for each  $u \in G.V$ 
2       $u.key = \infty$ 
3       $u.\pi = \text{NIL}$ 
4       $r.key = 0$ 
5       $Q = G.V$ 
6  while  $Q \neq \emptyset$ 
7       $u = \text{EXTRACT-MIN}(Q)$ 
8      for each  $v \in G.Adj[u]$ 
9          if  $v \in Q$  and  $w(u, v) < v.key$ 
10              $v.\pi = u$ 
11              $v.key = w(u, v)$ 

```



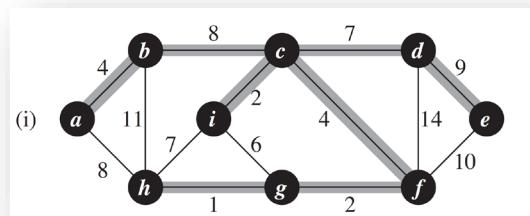
Prim's Algorithm....

- Step10
 - $u = e$

Q
Key
π

MST-PRIM(G, w, r)

```
1  for each  $u \in G.V$ 
2       $u.key = \infty$ 
3       $u.\pi = \text{NIL}$ 
4   $r.key = 0$ 
5   $Q = G.V$ 
6  while  $Q \neq \emptyset$ 
7       $u = \text{EXTRACT-MIN}(Q)$ 
8      for each  $v \in G.Adj[u]$ 
9          if  $v \in Q$  and  $w(u, v) < v.key$ 
10              $v.\pi = u$ 
11              $v.key = w(u, v)$ 
```



Questions?

kychen@mail.ntust.edu.tw